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Abstract

The method of local regularization has been shown to be an effective tool for
the reconstruction of solutions of linear and nonlinear inverse problems, especially
those problems with special structure or for which non-smooth solutions are ex-
pected. In the case of Volterra problems, the method retains the causal structure
of the original problem, in contrast to classical regularization methods, and leads
to very fast sequential numerical algorithms to solve the inverse problem. Lo-
cal regularization can be viewed as a generalization of simplified (or Lavrentiev)
regularization studied by Groetsch and others, and as such can be applied to
a wider variety of inverse problems; however, local regularization does not re-
quire an a priori estimate of the solution’s initial value and, even if this value is
known, in numerical tests local regularization frequently outperforms simplified
regularization in the quality of reconstructed solution.

In this paper, we study the application of local regularization to the non-
linear Volterra problem of Hammerstein type. We improve upon the results of
P. K. Lamm and Z. Dai (2005), where the localized approach led to a two-step
solution method; i.e., one regularized linear step followed by one fully nonlinear
step. Here we instead take advantage of the local nature of the method in order
to simultaneously implement regularization while providing for an effective lin-
earization strategy. The resulting method requires solving a nonlinear equation
at one point only, for the initial value of the unknown solution. Thereafter the
solution is reconstructed in a fast, sequential, and fully linear manner.

We present convergence results for this new method, discuss its numerical im-
plementation, and illustrate its use with numerical examples in which we compare
the results of local regularization with another method well-suited for Volterra
problems, the method of simplified (or Lavrentiev) regularization. In addition, we
show how a modified discrepancy principle, similar to that studied by Groetsch
and others for the method of simplified regularization, may be used to make an
effective a posteriori parameter selection.

1 Introduction

In this paper, we consider the problem of solving a nonlinear Volterra equation of
Hammerstein type, ∫ t

0
k(t, s)g(s, u(s)) ds = f(t), t ∈ [0, 1], (1.1)
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for ū ∈ C[0, 1], given suitable continuous data f . For the moment, we let the kernel
k satisfy k ∈ C([0, 1]2) and assume that the nonlinear function g : [0, 1]× R→ R is
continuous; further assumptions on k and g are made precise below.

Hammerstein equations of Volterra type appear in many applications, e.g. in
chemical absorption kinetics and in models of epidemics ([1, 16]). In most practical
situations, the equation is ill-posed and in need of stabilization when inexact data f δ

is used in place of “ideal” data f . Unfortunately, working with perturbed or “noisy”
data is unavoidable due to modeling or measurement error, round-off error, etc. We
henceforth let f δ ∈ X[0, 1], where X[0, 1] is either C[0, 1] or Lp(0, 1) for 1 < p < ∞,
and we make the standing assumption that∥∥∥f − f δ∥∥∥

X[0,1]
≤ δ, (1.2)

for some fixed δ > 0.
Before considering how to handle noisy data f δ, we first give conditions on k and

g which guarantee that equation (1.1) has a unique solution ū given “true” data f .

1.1 Solvability of equation (1.1)

Inherent in the structure of the Hammerstein integral equation (1.1) is the property
that the governing nonlinear operator may be viewed as the composition of a linear
integral operator K with a nonlinear operator G. Here K ∈ L(C[0, 1]) is the Volterra
integral operator given by

Kv(t) =

∫ t

0
k(t, s)v(s) ds, t ∈ [0, 1], v ∈ C[0, 1],

while G : C[0, 1]→ C[0, 1] is the Niemytski operator induced by g,

Gu(t) = g(t, u(t)), t ∈ [0, 1], u ∈ C[0, 1]. (1.3)

In terms of these operators, equation (1.1) may then be written as

KGu = f. (1.4)

For the (inner) nonlinear problem in (1.4), namely,

Solve

Gu = v (1.5)

for u ∈ C[0, 1], given v ∈ C[0, 1],

well-posedness of this problem is found under classical assumptions on g (see, e.g., [5]
or [9]). These conditions are given in (g1) and (g2) below, while condition (g2’) will
be of use in later sections.

Proposition 1.1. Let g ∈ C ([0, 1]× R) satisfy

(g1) lim
x→∞

g(t, x) =∞ and lim
x→−∞

g(t, x) = −∞ for all t ∈ [0, 1],
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(g2) (g(t, x)− g(t, y))(x− y) > 0, for all t ∈ [0, 1], x, y ∈ R, x 6= y.

Then there exists a unique operator P which is continuous from C[0, 1] onto C[0, 1]
for which

PGu = GPu = u (1.6)

for all u ∈ C[0, 1], where G is defined in (1.3). Further, if g satisfies both (g1) and
the strong monotonicity condition (g2’),

(g2’) (g(t, x)− g(t, y))(x− y) ≥ c̄|x− y|2, for all t ∈ [0, 1], x, y ∈ R, for some c̄ > 0,

then the operator P : C[0, 1]→ C[0, 1] defined in (1.6) is uniformly continuous.

In contrast to the well-posedness of the inner nonlinear problem (1.5) is the ill-
posedness of the (outer) linear problem associated with the composition in (1.4). In-
deed, for kernels k of practical interest, this linear problem,

Solve

Kv = f (1.7)

for v ∈ C[0, 1], given f ∈ Range(K) ⊂ C[0, 1],

is ill-posed due to lack of continuous dependence of solutions v on data f . Among the
kernels associated with ill-posedness are those most commonly found in the mathemat-
ical literature for first-kind linear Volterra equations, namely kernels k ∈ C1([0, 1]2)
for which k(t, t) 6= 0, t ∈ [0, 1]. A kernel of this kind is sometimes called one-smoothing
because for f ∈ Range(K) ⊂ C1(0, 1], a single differentiation of equation (1.7) with
respect to t leads to the well-posed second-kind equation

k(t, t)v(t) +

∫ t

0

∂k

∂t
(t, s)v(s) ds = f ′(t), t ∈ [0, 1],

for which there is a unique solution v which depends continuously on f ′ ∈ C([0, 1])
(c.f., [5, 15, 22]). Because v is the unique solution of the first-kind equation (1.7), it
is clear that one-smoothing kernels yield injective operators K, however the solution
of (1.7) is not stable under perturbations in f in the C[0, 1] norm, rather, it is only
stable in the (unnatural) C1 norm.

Our theory below applies not only to these one-smoothing kernels, but also to so-
called ν-smoothing kernels (for ν ≥ 2) in the case where the kernel is of convolution
type. By increasing ν, the degree of instability of the original linear problem (1.7) is
increased, thus allowing for a more severely ill-posed Hammerstein problem (1.1) than
one would have under the standard one-smoothing kernel assumption. We note that
while ν-smoothing kernels may also be defined for ν ≥ 2 in the nonconvolution case, it
is not known whether the ν-smoothing nonconvolution operator (αI +K)−1 satisfies
a needed growth condition as α→ 0; this condition does hold for both one-smoothing
nonconvolution kernels and general ν-smoothing convolution kernels (see Lemma 3.1
below).

The following definition describes the wide class of kernels to which the theory
developed in this paper applies.

Definition 1.1. For the purposes of this paper, we will say that the kernel k is
ν-smoothing and the associated operator K is a ν-smoothing operator, ν = 1, 2, . . .,
if k satisfies one of the following conditions:
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• If ν = 1, then k = k(t, s) satisfies k ∈ C1([0, 1]2) with k(t, t) 6= 0, t ∈ [0, 1].

• If ν = 2, 3, . . ., then there exists κ ∈ Cν([0, 1]) for which k(t, s) = κ(t− s) for all
0 ≤ s ≤ t ≤ 1, where κ satisfies

d`κ

dt`
(0) = 0, ` = 0, 1, ..., ν − 2, and

d(ν−1)κ

dt(ν−1)
(0) 6= 0.

Without loss of generality we may assume that equation (1.1) has been rescaled so

that k(t, t) = 1, t ∈ [0, 1], in the case of ν = 1, and
d(ν−1)κ

dt(ν−1)
(0) = 1 for ν ≥ 2.

Henceforth we assume that the kernel k in (1.1) is ν-smoothing for some integer
ν ≥ 1. Combining the last proposition with well-known results on ill-posedness of
linear Volterra equations (see, e.g., Ch 5 of [15], [22]), we have the following.

Proposition 1.2. If k is a ν-smoothing kernel for ν ≥ 1 and g ∈ C ([0, 1]× R)
satisfies (g1) and (g2), then for any f ∈ Range(K) there exists a unique solution
u of (1.1), however the equation is ill-posed due to lack of continuous dependence of
solutions u on data f ∈ C[0, 1].

2 Background

It is worth making brief note of some features of the ill-posed linear Volterra problem
(1.7) in order to better understand the regularization method proposed in this paper
for the stable solution of (1.1); these same features carry over to the nonlinear problem.

• The linear Volterra problem (1.7) is causal or non-anticipatory in the sense that,
given some t ∈ (0, 1), the value of f on the interval [0, t] depends only on the
value of v on [0, t]. Thus Volterra problems evolve in a time-like manner and it
is natural that solution methods for such problems be sequential in nature [22].

• Again for some t ∈ (0, 1), the value of v at t impacts Kv(τ) = f(τ) for τ ∈ (t, 1]
(provided the kernel k remains nonzero), so that useful information about v(t)
can be expected to be found in “future” values of the data f . However, it is also
the case that f(τ), τ ∈ (t, 1], contains information about v(s) for s ∈ (t, τ ], so
that the usefulness of f(τ) in the reconstruction of v(t) decreases as τ increases.
So although a Volterra problem is naturally solved in a sequential manner (de-
termining v(t) solely from f(t) and previously determined values of v on [0, t)),
when the data is imperfect – or when computations are subject to error – the
reconstruction v(t) can be improved by using a small amount of future data,
say, f(τ) for τ ∈ (t, t+ ρ], where ρ > 0 is small.

• For t ∈ (0, 1) but t near 1, the interval (t, t + ρ] of available “future” data f is
shrinking, with ρ → 0 as t → 1. As a result, reconstructions of solutions with
even classical regularization methods tend to deteriorate near the end of the
interval [0, 1] due to the loss of useful future data. This is an inherent feature
of the Volterra problem itself and is not related to any particular regularization
or solution method.
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From the above discussion, it is clear that one can only realistically expect to
accurately reconstruct the solution v of (1.7) on [0, 1 − ρ) for ρ > 0 small, or else
require data on a slightly extended interval in order to estimate v on all of [0, 1]. We
will take the latter approach in this paper and assume that a small amount of data
is available on the interval [0, 1 + ᾱ], for some fixed ᾱ > 0 small. So we must assume
that the original equation (1.1) (equivalently (1.4)) holds on this extended interval as
well, with definitions of K, G, f δ, and ū carried over to this interval, and that the
standing assumption (1.2) on data error now becomes∥∥∥f − f δ∥∥∥

X[0,1+ᾱ]
≤ δ, (2.1)

for δ > 0.

2.1 Existing regularization methods for the solution of (1.1)

Before discussing regularization methods which work directly on the full nonlinear
Hammerstein problem (1.1), we first examine two-step approaches which exploit the
linear-nonlinear decomposition in equation (1.4). Any viable regularization method
for the stable solution of the (outer) linear problem (1.7) may be used as the first step
in a two-step process of solving (1.1); such methods include classical regularization
methods due to Tikhonov-Phillips, Landweber, etc. [10, 17]. In the second step of this
process, the nonlinear problem (1.5) is solved, a step which could require considerable
computational resources despite its well-posedness.

In regularizing the linear Volterra problem (1.7), it is well-known that methods
such as Tikhonov regularization and other classical methods based on defined func-
tions of K?K, for K? the Hilbert-adjoint of K, are inefficient because the causal nature
of the Volterra problem is not preserved [22] (i.e., the adjoint K? is an anticipatory op-
erator, while the Volterra operator K is non-anticipatory). So we limit our discussion
here to two regularization methods, namely, the methods of simplified (or Lavrentiev)
regularization and local regularization, for which it is well-known that with either, the
causal nature of the original Volterra problem is preserved [22].

Simplified regularization has been studied by Groetsch and numerous other au-
thors, although not necessarily in the context of the Volterra problem (see, e.g.,
[13, 18, 19, 30, 34]). For (1.7) in the case of noisy data f δ, the method takes the
form of

αv +Kv = f δ, (2.2)

where α > 0 is a regularization parameter. Note however that equation (2.2) imposes
the unlikely condition v(0) = f δ(0)/α (for example, consider the case of f δ ≡ f), so
the following variation of (2.2) is often used instead, namely,

α(v − v̄(0)) +Kv = f δ. (2.3)

Here the value of v̄(0) must be known a priori, where v̄ is used to denote the “true”
solution of (1.7). Despite the necessity of this additional information, it is clear from
(2.3) that simplified regularization retains the causal structure of the original Volterra
problem. In general, the theoretical analysis of the method is limited to only special-
ized operators K, for example, to self-adjoint (not applicable in the case of Volterra
operators) or monotone K. Janno has shown that the linear Volterra operator K
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is monotone provided K is both one-smoothing and of convolution type, so the the-
ory of simplified regularization does apply in this case (see Lemma 3 of [19]). It is
not known however whether the method is valid for Volterra problems with the more
general ν-smoothing operators K.

An alternative to simplified regularization is the method of local regularization by
which a small amount of future data is used to reconstruct the solution v of (1.7) at
any given value of t ∈ [0, 1]; the future data is then consolidated or averaged in a way
which allows the equation for local regularization to retain a Volterra structure.

We briefly describe here the method of local regularization in the context of the
linear problem (1.7), as the method we develop in Section 3 for the full Hammerstein
problem is built upon this structure. The idea is that for each α ∈ (0, ᾱ], we obtain
a small amount of future information from equation (1.7) by advancing the equation
from t to t+ ρ, for ρ ∈ [0, α], which gives (after splitting the integral),∫ t+ρ

t
k(t+ ρ, s)v(s) ds+

∫ t

0
k(t+ ρ, s)v(s) ds = f(t+ ρ), (2.4)

for t ∈ [0, 1]. In order to consolidate information on the future interval [t, t + ρ], we
integrate both sides of (2.4) with respect to a signed Borel measure ηα = ηα(ρ), where
ηα satisfies conditions to be detailed shortly. (The Lebesgue measure could be used
for now, as it satisfies these conditions for small ν.) After simplification, the equation
takes the form of∫ α

0

∫ ρ

0
k(t+ρ, t+s)v(t+ s) ds dηα(ρ) +

∫ t

0

∫ α

0
k(t+ρ, s) dηα(ρ) v(s) ds

=

∫ α

0
f(t+ ρ) dηα(ρ), t ∈ [0, 1], (2.5)

an equation which is still ill-posed and is satisfied by the “true” solution of (1.7),
provided the “true” data f is used in (2.5).

To handle the situation where f in (2.5) is replaced by noisy data f δ, stability
is added to the equation by (temporarily) imposing on the first term of (2.5) the
rigidity condition v(t + s) = v(t), for s in the small interval [0, α]. The condition is
only formally imposed for all values of t ∈ [0, 1]; by this we mean that the rigidity
condition actually need never hold precisely but, rather, gives rise to a new equation,

bαv +Kαv = f δα, (2.6)

where for t ∈ [0, 1],

bα(t) :=

∫ α

0

∫ ρ

0
k(t+ ρ, t+ s) ds dηα(ρ), (2.7)

f δα(t) :=

∫ α

0
f δ(t+ ρ) dηα(ρ), (2.8)

and Kα is a Volterra operator given by

Kαv(t) :=

∫ t

0
kα(t, s) v(s) ds, v ∈ C[0, 1], (2.9)
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with kernel

kα(t, s) :=

∫ α

0
k(t+ ρ, s) dηα(ρ), 0 ≤ s ≤ t ≤ 1. (2.10)

In fact we can simplify (2.6) further by noting that if the kernel k is of convolution
type, then Kα is also of convolution type and the quantity bα is independent of t. This
latter fact is approximately true in the one-smoothing nonconvolution case because
k(t+ ρ, t+ s) ≈ k(t, t) = 1 for all t ∈ [0, 1] and ρ, s small. That is, in this case,

bα ≈
∫ α

0
ρ dηα(ρ).

Using these observations, we modify (2.6) to obtain the classical local regularization
equation,

aαv +Kαv = f δα, (2.11)

where the scalar aα depends on α and ν via

aα =



∫ α

0
ρ dηα(ρ), if ν = 1,

∫ α

0

∫ ρ

0
κ(ρ− s) ds dηα(ρ), if ν > 1.

, (2.12)

where κ is given in Definition 1.1.
The linear theory of local regularization is well-developed [2, 3, 6, 20–28, 31]. For

suitably defined measures ηα and all α > 0 sufficiently small, it is known that the
coefficient aα is positive for ν = 1, 2, . . ., and thus the local regularization equation
(2.11) is a well-posed second-kind Volterra equation with unique solution vδα ∈ C[0, 1],
where vδα depends continuously on the data f δ ∈ X[0, 1]. Further, if we make an
appropriate selection of α = α(δ) as δ → 0, we have the usual regularized convergence
result that vδα → v̄ in C[0, 1] as δ → 0.

2.2 Implementation of existing methods for the solution of (1.1)

In practice either simplified regularization or local regularization may be used to first
solve the (outer) ill-posed linear Volterra problem (1.7) to obtain a stable reconstruc-
tion of v; in the second step we must apply nonlinear solution techniques in order to
determine an estimate u for the solution of the nonlinear problem (1.5). Theoreti-
cal results for a two-step process based on simplified regularization are, as expected,
limited to specialized operators K, while the analysis of the approach based on local
regularization may be found in [25] for general ν-smoothing convolution operators K
and continuous data f δ.

Alternatively, simplified regularization can be very easily applied directly to the
full nonlinear Hammerstein problem (1.4) (equivalently, (1.1)) in the case of noisy
data f δ. That is, if ū(0) is known, the regularization equation becomes

α(u− ū(0)) +KGu = f δ, (2.13)

which may be used to solve the Hammerstein problem in a single step instead of
two. The method still preserves the causal nature of the original problem and leads
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naturally to a sequential solution method since the solution uδα of (2.13) may be found
via

uδα(0) = ū(0),

uδα(t) = ū(0) +
1

α
f δ(t)− 1

α

∫ t

0
k(t, s)g(s, uδα(s)) ds, t ∈ (0, 1], (2.14)

where the integral in the final term of (2.14) can be evaluated without using the
value of uδα at t. So in (2.14), the value of the function uδα at t is computed directly
from its values on [0, t) and the method of simplified regularization for the nonlinear
Hammerstein problem becomes a sequential, fully-linear solution method.

Similarly, a direct application of local regularization directly to the full nonlinear
Hammerstein problem can be written, in the case of noisy data,

aαGu+KαGu = f δα, (2.15)

which also leads to a sequential method because the solution uδα of (2.15) may be
found from

g(t, uδα(t)) =
1

aα
f δα(t)− 1

aα

∫ t

0
kα(t, s)g(s, uδα(s)) ds, t ∈ (0, 1], (2.16)

where again the last integral in (2.16) is evaluated without using the value of uδα
at t. However, in contrast to simplified regularization, one must still solve a nonlinear
problem at every step to recover the value of uδα(t) from g(t, uδα(t)).

The purpose of this paper is to remedy this situation for the method of local
regularization, making modifications which lead to a fully linear solution method for
uδα(t), t ∈ (0, 1], such as occurs for the method of simplified regularization. In the
next section, we derive the modified method and develop an associated convergence
theory. Finally, in Section 4, we show by example how our new method is capable of
outperforming the method of simplified regularization.

3 Local regularization for the full Hammerstein problem

The needed modification of (2.15) is based on the simple observation that the (small)
regularization interval on which the method is based is also a good place to facilitate
a linearization of any nonlinear terms, in this case, the nonlinear Gu in the first term
of (2.15).

To this end, let τα ∈ C[0, 1] be given satisfying

0 ≤ τα(t) ≤ min{t, α}, t ∈ [0, 1]. (3.1)

Then we seek uδα satisfying the new local regularization equation,

aαGταu+KαGu = f δα (3.2)

where for w ∈ C[0, 1] and t ∈ [0, 1],

Gταw(t) := g(t, w(t− τα(t))) + gx(t, w(t− τα(t))) [w(t)− w(t− τα(t))] . (3.3)
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If τα ≡ 0, then (3.2) reduces to (2.15). Otherwise, if τα(t) > 0 for all t ∈ (0, 1],
then equation (3.2) is the same as (2.15) at the point t = 0 only and uδα(0) is the
solution of the nonlinear equation

g(0, u(0)) =
1

aα

∫ α

0
f δ(ρ) dηα(ρ). (3.4)

Once uδα(0) has been determined, uδα(t) can be found for t ∈ (0, 1] directly from uδα(s),
s ∈ [0, t), via

uδα(t) = uδα(t− τα(t))− g(t, uδα(t− τα(t)))

gx(t, uδα(t−τα(t)))
(3.5)

+
1

aα gx(t, uδα(t−τα(t)))

[∫ α

0
f δ(t+ ρ)dηα(ρ)

]
− 1

aαgx(t, uδα(t−τα(t)))

[∫ t

0
kα(t, s) g(s, uδα(s)) ds

]
.

(Based on ( g2’) and (3.14) below, equations (3.4)–(3.5) are well-defined.) As before,
the integral in the final term of (3.5) can be evaluated without using the value of uδα at
t, so the local regularization method associated with equation (3.2) is a linear, sequen-
tial regularization method for all t > 0. See Section 4 for more discussion regarding
implementation of this method.

Note that we deliberately did not require the size of the linearization interval to
be the same as the size of the regularization interval; indeed, although one may need
to increase the size of the regularization parameter α when the noise level δ is large,
this should generally not affect (in a significant way) the interval associated with
linearization.

Remark 3.1. It is worth noting that while equation (2.15) is a second-kind nonlinear
equation of Volterra type, the new equation (3.2) with τα(t) > 0, t ∈ (0, 1], is a
functional integral equation, or a delay integral equation with discrete finite delays.

In the remainder of this section we investigate the well-posedness of equation (3.2)
and perform a convergence analysis appropriate for the regularization method.

3.1 Theoretical analysis

The following definitions will be needed in this section.
For any fixed ε > 0, we define a modulus of continuity for ū ∈ C[0, 1 + ᾱ],

µ(ε, ū) := max {|ū(t)− ū(s)| ; t, s ∈ [0, 1 + ᾱ], |t− s| ≤ ε} , (3.6)

where µ(ε, ū) → 0 as ε → 0. We can obtain more specific results when ū satisfies
additional smoothness assumptions, so we also consider the possibility of ū satisfying
the Hölder condition

|ū(t)− ū(s)| ≤ Lξ|t− s|ξ, (3.7)

for 0 < ξ ≤ 1, Lξ > 0, and all t, s ∈ [0, 1 + ᾱ].
We define the interval J as follows:

J ⊃ {ū(t) : t ∈ [0, 1 + ᾱ]}, J open, (3.8)
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and use the notation C([0, 1]×J) to denote the space of bounded continuous functions
on [0, 1]× J with norm denoted by ‖ · ‖J ,

‖h‖J := sup
(t,x)∈[0,1]×J

|h(t, x)| <∞, h ∈ C([0, 1]× J).

As usual, h ∈ C1([0, 1]× J) if h is differentiable and h, ht, hx ∈ C([0, 1]× J).

Definition 3.1. We call {ηα}α∈(0,ᾱ] a local-regularizing family of measures for prob-
lem (1.4) provided that, for α ∈ (0, ᾱ], each ηα is a signed Borel measure on [0, α],
normalized such that ηα([0, α]) = 1, and the family {ηα}α∈(0,ᾱ] satisfies the following
conditions:

(A1) For each j = 0, 1, ..., ν,∫ α

0
ρjdηα(ρ) = αj (cj +O(α)) for all α ∈ (0, ᾱ], (3.9)

where the constants c0, c1, . . . , cν ∈ R and cν 6= 0 are such that the roots of the
polynomial pν(x), defined by

pν(x) =
cν
ν!
xν +

cν−1

(ν − 1)!
xν−1 + ...+

c1

1!
x+

c0

0!
, (3.10)

have negative real part.

(A2) There exists C̃ > 0 such that∫ α

0
|h(ρ)| d |ηα| (ρ) ≤ C̃ ‖h‖X[0,α] , for all α ∈ (0, ᾱ],

for all h ∈ X[0, α]. Here |ηα| denotes the total variation of the measure ηα.

Remark 3.2. Standard classes of measures used in local regularization satisfy both
assumptions (A1) and (A2) [24]. While condition (A1) is not used explicitly in this
paper, it is needed for essential results (e.g., Lemma 3.1 below) upon which this paper
relies. Condition (A2) implies that f δα ∈ C[0, 1] when f δ ∈ X[0, 1+ᾱ], for f δα defined in
(2.8). Indeed, this follows from (A2) and from continuity of translations on X[0, 1+ᾱ].
Further, if fα is defined as expected from f , i.e.,

fα(t) :=

∫ α

0
f(t+ ρ) dηα(ρ), t ∈ [0, 1], (3.11)

then ∥∥∥fα − f δα∥∥∥ ≤ C̃ ∥∥∥f − f δ∥∥∥
X[0,1+α]

≤ C̃δ.

Theorem 3.1 is the main well-posedness/approximation result associated with
equation (3.2).
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Theorem 3.1. Let ū denote the solution of (1.1) with “true” data f ∈ C[0, 1 + ᾱ] and
where g ∈ C1([0, 1 + ᾱ]× J) satisfies (g1) and (g2’). For equation (3.2), assume that
f δ ∈ X[0, 1+ ᾱ] satisfies (2.1) and that {ηα} is a local-regularizing family of measures.
Then for ᾱ sufficiently small the following are true.

(1) If δ ∼ ανλ(α, ū), where

λ(α, ū) := max{α, µ(α, ū)}, (3.12)

then for every α ∈ (0, ᾱ] there exists a unique solution uδα(δ) ∈ C([0, 1]; J) of

(3.2) for which

‖uδα(δ) − ū‖ = O
(
λ(α(δ), ū)

)
→ 0 as δ → 0.

(1’) If, in addition, ū satisfies the Hölder condition (3.7) with Hölder exponent ξ,

and if α = α(δ) is selected satisfying α(δ) ∼ δ
1
ν+ξ as δ → 0, then

‖uδα(δ) − ū‖ = O
(
δ

ξ
ν+ξ
)
→ 0 as δ → 0.

(2) The mapping f δ ∈
{
h ∈ X[0, 1 + ᾱ]

∣∣ ‖h− f‖ ≤ δ} → uδα ∈ C([0, 1]; J) is con-
tinuous for each α ∈ (0, ᾱ].

Before proving Theorem 3.1, we state two lemmas which facilitate the arguments
in the proof. The first lemma contains known results regarding the quantities Kα and
aα defined in (2.9) and (2.12), respectively.

Lemma 3.1. [23, 24, 31] Let {ηα}α∈(0,ᾱ], be a local-regularizing family of measures.
Then there exists a constant C̄ for which

‖k‖C[0,α] ≤ C̄α
ν−1 (3.13)

for every α ∈ (0, ᾱ]. Further, if ᾱ > 0 is sufficiently small, there are constants
0 < C1 < C2 such that

C1α
ν ≤ aα ≤ C2α

ν , α ∈ (0, ᾱ], (3.14)

and constants C > 0 and M > 0 such that if k satisfies
∥∥k(ν)

∥∥
C[0,ᾱ]

≤ C then

(aαI +Kα)−1 : C[0, 1] → C[0, 1] is a bounded linear operator, with operator norm
satisfying ∥∥∥(aαI +Kα)−1

∥∥∥
L(C[0,1])

≤ M
aα
, (3.15)

for all α ∈ (0, ᾱ].

In this second lemma, we establish some useful technical estimates.

Lemma 3.2. Let g satisfy the assumptions of Theorem 3.1 and let ∆ ∈ [0, ᾱ] be fixed.
Let v, w ∈ M̃z, where for some z ∈ C[0, 1 + ∆] and cz > 0,

M̃z :=
{
u ∈ C([0, 1]; J)

∣∣ ‖Gu−Gz‖ ≤ cz} .
11



If sα(·) and rα(·) satisfy

0 ≤ sα(t), rα(t) ≤ min{t, α}, t ∈ [0, 1 + ∆],

then
‖v − z‖ ≤ cz

c̄
, (3.16)

∥∥g(·, v(· − sα))− g(·, w(· − sα))− gx(·, w(· − rα))
(
v(· − sα)− w(· − sα)

)∥∥
≤ m̄

(
4cz
c̄

+ 2µ(α, z)

)
‖v(· − sα)− w(· − sα)‖, (3.17)

and thus

‖g(·, v(· − sα))− g(·, w(· − sα))− gx(·, w(· − rα))(v(· − sα)− w(· − sα))‖

≤ 2m̄cz
c̄

(
4cz
c̄

+ 2µ(α, z)

)
. (3.18)

Proof. Using (g2’) we have ‖v − z‖ ≤ 1

c̄
‖Gv −Gz‖, from which (3.16) follows.

Let t ∈ [0, 1 + ∆] and let s = sα(t) and r = rα(t). Then using the assumed
regularity of g,

|g(t, v(t− s)− g(t, w(t− s))− gx(t, w(t− r))(v(t− s)− w(t− s))|
= |gx(t, ψ(t, s, v, w))− gx(t, w(t− r))| |v(t− s)− w(t− s)|,

for min{v(t− s), w(t− s)} ≤ ψ(t, s, v, w) ≤ max{v(t− s), w(t− s)}, so

|ψ(t, s, v, w)− w(t− r)|
≤ |ψ(t, s, v, w)− w(t− s)|+ |w(t− s)− z(t− s)|

+|z(t− s)− z(t)|+ |z(t)− z(t− r)|+ |z(t− r)− w(t− r)|

≤ |v(t− s)− w(t− s)|+ 2cz
c̄

+ 2µ(α, z)

≤ 4cz
c̄

+ 2µ(α, z).

Thus

‖g(·, v(· − s))− g(·, w(· − s))− gx(·, w(· − r))(v(· − s)− w(· − s))‖
≤ m̄‖ψ(·, s, v, w)− w(· − r)‖ ‖v(· − s)− w(· − s)‖

≤ m̄

(
4cz
c̄

+ 2µ(α, z)

)
‖v(· − s)− w(· − s)‖,

proving (3.17). The inequality in (3.18) then follows from (3.16).

We now return to the proof of Theorem 3.1.
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Proof. (Proof of Theorem 3.1) Let α ∈ (0, ᾱ] be fixed. Applying the same arguments
that we used to derive equation (2.5) to the full Hammerstein equation (1.1), we obtain
the nonlinear analog of (2.5), an equation still satisfied by ū,∫ α

0

∫ ρ

0
k(t+ρ, t+s)g(t+ s, u(t+ s)) ds dηα(ρ)

+

∫ t

0

∫ α

0
k(t+ρ, s) dηα(ρ) g(s, u(s)) ds =

∫ α

0
f(t+ ρ) dηα(ρ), (3.19)

for t ∈ [0, 1]. That is,

aαGū+KαGū = fα + (aαGū−DαGū) , (3.20)

where fα is given by (3.11) and Dα : C[0, 1+α]→ C[0, 1] is defined, for v ∈ C[0, 1+ᾱ],
by

Dαv(t) :=

∫ α

0

∫ ρ

0
k(t+ ρ, t+ s)v(t+ s) ds dηα(ρ), t ∈ [0, 1].

But uδα satisfies (3.2), rewritten here as

aαGu+KαGu = f δα + aα [Gu− Gταu] , (3.21)

so subtracting equation (3.20) from equation (3.21), uδα also solves

(aαI +Kα) [Gu−Gū] = F δα + aα [Gu− Gταu] , (3.22)

where F δα is given by
F δα := f δα − fα + [DαGū− aαGū] . (3.23)

Therefore uδα satisfies
u = Hαu, (3.24)

for Hα : C([0, 1]; J)→ C[0, 1] defined for w ∈ C([0, 1]; J) via

Hαw := P
[
(aαI +Kα)−1

(
F δα + aαGw − aαGταw

)
+Gū

]
, (3.25)

where P was defined in Proposition 1.1.

Proof of (1): For ᾱ > 0 sufficiently small, there is a γ > 0 satisfying

δ ≤ γανλ(α, ū) (3.26)

for all α ∈ (0, ᾱ]. Let

θ =M

[
1 + 2 ‖gx‖J +

C̃γ

C1
+

2C̃C̄

C1
(‖gx‖J + ‖gt‖J) +

c2

2C1
‖k‖C1(J)‖g‖J

]
.

Then, making use of (3.8) and the fact that λ(α, ū)→ 0 as α→ 0, it follows that for
ᾱ > 0 sufficiently small and all α ∈ (0, ᾱ] we have{

y ∈ R
∣∣∣ max
t∈[0,1]

|ū(t)− y| ≤ θ

c̄
λ(α, ū)

}
⊂ J, (3.27)
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4Mm̄ θλ(α, ū)

c̄

(
4 θ

c̄
+ 2

)
≤ 1, (3.28)

and, for some fixed d ∈ (0, 1),

M
c̄

[
2m̄

(
4θλ(α, ū)

c̄
+ 2λ(α, ū)

)
+ ‖gx‖J

2θ + c̄

c̄
λ(α, ū)

]
≤ d. (3.29)

Henceforth, we fix this value of ᾱ. In what follows we also make use of the bounds
(3.16) – (3.18) from Lemma 3.2, using the parameter values cz = θλ(α, ū), ∆ = 0,
z = ū, and M̃z = M θ

α (defined below) in that lemma.

The verification of (1) comes from showing that for all α ∈ (0, ᾱ], the mapping Hα

is a contraction on the set

M θ
α :=

{
u ∈ C([0, 1]; J)

∣∣∣∣∣ ‖Gu−Gū‖ ≤ θλ(α, ū)

}
.

Let α ∈ (0, ᾱ] be arbitrary. The proof of the desired result is in three parts.

Part 1: M θ
α ⊂ C[0, 1] is closed, nonempty.

Let ui ∈M θ
α satisfy ui → u ∈ C[0, 1]. ThenGui → Gu and thus ‖Gu−Gū‖ ≤ θλ(α, ū).

It follows from (3.16) that ‖u(t)− ū(t)‖ ≤ θλ(α, ū)/c̄ for all t ∈ [0, 1]. Thus u(t) ∈ J ,
for all t ∈ [0, 1], and u ∈M θ

α. In addition, ū ∈M θ
α so M θ

α is not empty.

Part 2: Hαu ∈M θ
α, for all u ∈M θ

α.

From the definitions of F δα and Hαu in (3.23) and (3.25) respectively, we have

‖GHαu−Gū‖ ≤
M
aα

∥∥∥aαGu− aαGταu+ F δα

∥∥∥
≤ M

6∑
i=1

Ti, (3.30)

where

T1 := ‖Gu(·)−Gū(·)− gx(·, u(· − τα(·))) [u(·)− ū(·)]‖
T2 := ‖Gū(·)− g(·, ū(· − τα(·)))‖
T3 := ‖g(·, ū(· − τα(·)))− g(·, u(· − τα(·)))

−gx(·, u(· − τα(·))) [ū(· − τα(·))− u(· − τα(·))]‖
T4 := ‖gx(·, u(· − τα(·))) [ū(· − τα(·))− ū(·)]‖

T5 :=

∥∥f δα − fα∥∥
aα

T6 :=
1

aα
‖DαGū(·)− aαGū(·)‖ .

Estimates on T1 and T3 follow from (3.18) and (3.28),

Ti ≤
2m̄ θλ(α, ū)

c̄

(
4 θλ(α, ū)

c̄
+ 2λ(α, ū)

)
≤ λ(α, ū)

2
, for i = 1, 3,
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while estimates of T2 and T4 are straightforward,

Ti ≤ ‖gx‖J λ(α, ū), for i = 2, 4.

Using Lemma 3.1 and (3.26),

T5 =
1

aα

∥∥∥fα − f δα∥∥∥ ≤ C̃δ

C1αν
≤ C̃γ

C1
λ(α, ū).

Finally,
T6 ≤ T6,1 + T6,2,

where

T6,1 :=
1

aα

∥∥∥∥∫ α

0

∫ ρ

0
k(·+ ρ, ·+ s) [g(·+ s, ū(·+ s))− g(·, ū(·))] ds dηα(ρ)

∥∥∥∥ ,
≤ 1

C1αν

∫ α

0

∥∥∥∥∫ ρ

0
k(·+ ρ, ·+ s) [g(·+ s, ū(·+ s))− g(·, ū(·))] ds

∥∥∥∥ d |ηα| (ρ)

≤ C̃ · C̄αν−1

C1αν
sup
ρ∈[0,α]

∣∣∣∣∫ ρ

0
‖g(·+ s, ū(·+ s))− g(·, ū(·))‖ ds

∣∣∣∣
≤ C̃C̄

C1α

∫ α

0
(‖gx‖J µ(α, ū) + ‖gt‖α) ds

≤ 2C̃C̄

C1
(‖gx‖J + ‖gt‖J)λ(α, ū).

and

T6,2 :=
1

aα

∥∥∥∥(∫ α

0

∫ ρ

0
k(·+ ρ, ·+ s) ds dηα(ρ)− aα

)
g(·, ū(·))

∥∥∥∥ .
But T6,2 = 0 in the case of ν = 2, 3, . . ., while for ν = 1 we have

T6,2 ≤ c2α
2

2C1α
‖k‖C1(J)‖g‖J ≤

c2λ(α, ū)

2C1
‖k‖C1(J)‖g‖J .

Combining these estimates and using the definition of θ, it follows that

‖GHαu−Gū‖ ≤ θλ(α, ū),

so that Hαu satisfies one of the conditions to belong to M θ
α. This last inequality also

gives

‖Hαu− ū‖ ≤
θ

c̄
λ(α, ū),

so that from (3.27), Hαu(t) ∈ J for all t ∈ [0, 1] and all α ∈ (0, ᾱ]. Further, from the
definition of Hα and the fact that F δα ∈ C[0, 1], we have Hαu continuous, and thus
Hαu ∈ C([0, 1]; J). It follows that Hαu ∈M θ

α.

Part 3. Hα is a contraction on M θ
α.
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Let u1, u2 ∈M θ
α. Then Hαui ∈M θ

α, i = 1, 2, and

‖Hαu1 −Hαu2‖ ≤
1

c̄
‖GHαu1 −GHαu2‖

≤ M
c̄
‖(Gu1 − Gταu1)− (Gu2 − Gταu2)‖

≤ M
c̄

3∑
i=1

Si,

where

S1 := ‖Gu1 −Gu2 − gx(·, u1(· − τα(·)))[u1 − u2]‖
S2 := ‖g(·, u2(· − τα(·)))− g(·, u1(· − τα(·)))

− gx(·, u2(· − τα(·)))[u2(· − τα(·))− u1(· − τα(·))]‖
S3 := ‖[gx(·, u1(· − τα(·)))

− gx(·, u2(· − τα(·)))][u1(· − τα(·))− u2(·)]‖ .

Then from (3.17) we have

Si ≤ m̄
(

4θλ(α, ū)

c̄
+ 2λ(α, ū)

)
‖u1 − u2‖, i = 1, 2,

while for S3, we note that

‖u1(· − τα(·))− u2(·)‖
≤ ‖u1(· − τα(·))− ū(· − τα(·))‖+ ‖ū(· − τα(·))− ū(·)‖+ ‖ū(·)− u2(·)‖

≤ λ(α, ū)
2θ + c̄

c̄
,

so

S3 ≤ ‖gx‖J ‖u1(· − τα(·))− u2(· − τα(·))‖‖u1(· − τα(·))− u2(·)‖

≤ ‖gx‖J ‖u1 − u2‖λ(α, ū)
2θ + c̄

c̄
.

It follows that
‖Hαu1 −Hαu2‖ ≤ d‖u1 − u2‖,

where d ∈ (0, 1) is defined in (3.29).
Thus for any α ∈ (0, ᾱ], there is uδα ∈ C([0, 1]; J) which is the unique fixed point

of Hα and the unique solution of (3.2), completing the proof of (1).

Proof of (1’): For ū satisfying (3.7), it follows that µ(α, ū) = O
(
αξ
)

= O
(
δ

ξ
ν+ξ

)
.

So for (1’), the quantity λ(α, ū) given by (3.12) satisfies λ(α, ū) = O
(
δ

ξ
ν+ξ

)
as δ → 0

and the result follows by using this value of λ(α, ū) and repeating the arguments for
(1).
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Proof of (2): For i = 1, 2, let f δi ∈
{
h ∈ X[0, 1 + ᾱ]

∣∣ ‖h− f‖X[0,1+ᾱ] ≤ δ
}

and define

Hα,i as usual, now with f δi replacing f δ. Then there exists unique uδα,i ∈ C([0, 1]; J)

satisfying uδα,i = Hα,iu
δ
α,i, for i = 1, 2. It follows that∥∥∥uδα,1 − uδα,2∥∥∥ =
∥∥∥Hα,1u

δ
α,1 −Hα,2u

δ
α,2

∥∥∥
≤

∥∥∥Hα,1u
δ
α,1 −Hα,1u

δ
α,2

∥∥∥+
∥∥∥Hα,1u

δ
α,2 −Hα,2u

δ
α,2

∥∥∥
≤ d

∥∥∥uδα,1 − uδα,2∥∥∥+

∥∥∥∥∫ α

0
f δ1 (·+ ρ) dηα(ρ)−

∫ α

0
f δ2 (·+ ρ) dηα(ρ)

∥∥∥∥
for d ∈ (0, 1) defined in (3.29) above, so we have

(1− d)
∥∥∥uδα,1 − uδα,2∥∥∥ ≤ C̃ ∥∥∥f δ1 − f δ2∥∥∥

X[0,1+ᾱ]

or ∥∥∥uδα,1 − uδα,2∥∥∥ ≤ C̃

1− d

∥∥∥f δ1 − f δ2∥∥∥
X[0,1+ᾱ]

.

4 Discretization and Numerical Implementation

We briefly describe one numerical implementation of the new local regularization
equation (3.2) by defining a simple discrete collocation method which is applied to
equation (3.5) (equivalently, to (3.2)).

To this end, we let N be a positive integer, sufficiently large so that for ∆t = 1/N
and

ti := i∆t, i = 1, 2, . . . , N,N + 1, . . . ,

there is an integer R ≥ 1 satisfying

0 < (1 + ᾱ)−tN+R ≤ ε,

where ε > 0 is a given (small) tolerance. In the discrete setting, the regularization
parameter α ∈ (0, ᾱ] satisfies

α = tL, for some fixed L ∈ {1, 2, . . . , R},

while the discrete form τi of τα(t) in (3.1) satisfies

0 ≤ τi ≤ min{ti, α} = min{i, L}∆t, i = 1, . . . N.

To simplify the exposition in what follows, we fix τi at its smallest nonzero value, i.e.,

τi = ∆t, i = 1, . . . N,

a choice that appears to be reasonable for many examples.
We assume that a reasonable quadrature scheme is used to approximate integrals

appearing in equation (3.5), and use the notation [·]Q to indicate this scheme. Thus,
the computed value of f δα(t) evaluated at t = ti and α = tL will be designated, for
i = 1, . . . , N , by the scalar f δi , where

f δi :=

[ ∫ α

0
f δ(ti + ρ) dηα(ρ)

]
Q

= [ f δα(ti) ]Q. (4.1)
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Similarly, the computed value âα of aα is given by

âα := [ atL ]Q.

For j = 1, . . . , N , let χj denote the characteristic function on the interval [tj−1, tj).
Then we seek the vector c = (cj) (where cj = cj(δ, L,N), for j = 1, . . . , N) so that
for t ∈ [0, 1],

u(t) :=
N∑
j=1

cjχj(t) (4.2)

satisfies equation (3.5) at the collocation point ti, i = 1, . . . , N . This leads to the
system of equations, for i = 2, . . . , N ,

ci = ci−1 −
g(ti, ci−1)

gx(ti, ci−1)
+

f δi
âα gx(ti, ci−1)

(4.3)

− 1

âαgx(ti, ci−1)

∫ ti

0
kα(ti, s) g

s , i−1∑
j=1

cjχj(s)

 ds


Q

, (4.4)

so it is clear that, beginning with c2, each ci is determined in a sequential manner
without requiring the solution of a nonlinear equation.

There is no defined value for c0 so we cannot use equation (4.4) to recover c1. If we
have a good estimate of the desired solution ū at t = 0, then that value could be used
for c0 and then equation (4.4) used to find c1. Otherwise, we may find c1 satisfying
the discretized regularization equation evaluated at the collocation point t, t→ t−1 ,

âαg(t1, c1) = f δ1 −
[∫ t1

0
kα(t1, s) g(s , c1) ds

]
Q

, (4.5)

a nonlinear equation in c1.

4.1 Numerical examples.

In each of the examples below, we specify the ν-smoothing kernel k, the nonlinear
function g, and a solution ū from which the true data f is obtained by computing
KGū exactly; the data is then discretized with a given value of N and uniformly
distributed random error is added to generate the discretization f δ = (f δi ) of f δ. In
order to better make comparisons with simplified (Lavrentiev) regularization in some
of the examples below, we report the relative error between discretized f and f δ

on the original interval [0, 1]; the error on the extended interval [0, 1 + ᾱ] is slightly
larger. Further, to avoid confusion we denote the regularization parameters for local
regularization and simplified (Lavrentiev) regularization αloc and αlav, respectively.

In each example of local regularization we let ηα be given by the normalized
Lebesgue measure on [0, α] and we use (4.5) to determine c1. For simplified (Lavren-
tiev) regularization, we use the exact value of ū(0) in the discrete form of equation
(2.3), even though this value is rarely available.

Finally, except for Example 4.4 below in which a modified discrepancy principle for
local regularization is utilized, results presented in the tables and figures that follow are
those associated with the regularization parameter giving the smallest relative error
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in reconstructed solutions. In figures, the dashed curve represents the true solution ū
while the solid curve is that of the reconstructed solution.

Example 4.1. In this first example we let k(t) = 1, a one-smoothing convolution
kernel, ū(t) = 8(t − 0.4)2 + 1, and g(t, u) = u3. The discretization level is given by
N = 200 and we give results for both local regularization and simplified regularization
in the case of several different levels of relative data error. The reconstructed solutions
for local regularization and simplified regularization are graphed in Figure 1 in the case
of 2% relative data error.

In Table 1, the following quantities are given for each regularization method and
for levels .5%, 1%, 2%, and 4% of relative data error: (1) the relative solution error;
(2) the base-2 logarithm of the ratio of current to previous relative solution error, a
quantity corresponding to s in a hypothesized convergence rate of Cδs; and (3) the
value of the regularization parameter used in each case.

2% relative error

Local regularization Simplified (Lavrentiev) regularization

2% relative error

Figure 1: Regularization methods applied to the one-smoothing problem in Exam-
ple 4.1, with 2% relative data error. Left: Local regularization, Right: Simplified
(Lavrentiev) regularization.

.

Table 1: Example 4.1 (one-smoothing convolution kernel)

Relative
data error

Local regularization Simplified regularization

Rel. error log2(ratio) αloc Rel. error log2(ratio) αlav

.005 .0206 – .060 .1026 – 0.40
.01 .0287 .48 .080 .1423 .47 0.50
.02 .0409 .51 .095 .1942 .45 0.80
.04 .0604 .56 .120 .2619 .43 1.25

Example 4.2. We now let k(t) = .5t2, a three-smoothing convolution kernel, but
use the same g and ū as in Example 4.1. Thus this problem is more severely ill-
posed than that seen in Example 4.1 and, in fact, the theory of simplified (Lavrentiev)
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regularization has not been developed for ν-smoothing problems when ν > 1. Indeed,
this method fails to find a reasonable reconstruction of ū even when the “true” data
f is used (i.e., for 0% relative error in data). In Figure 2 the results for simplified
regularization are shown for four different values of αlav and for 0% relative data
error. It was observed that the relative error in reconstructed solutions apparently
reaches its infimum as αlav →∞, with the constant-valued solution in this case equal
to the user-supplied scalar, ū(0).

In contrast, the method of local regularization performs well when relative data
error levels range from 0% to 4% and higher, as can be seen in Figure 3. The findings
for both regularization methods in the case of noisy data are summarized in Table 2.

Figure 2: Simplified (Lavrentiev) regularization applied to the three-smoothing prob-
lem in Example 4.2 in the case of 0% relative error in data. Top row: αlav = .018, .038.
Bottom row: αlav = 5, 10. The relative solution error was observed to decrease with
increasing αlav.

Example 4.3. In this example, we apply local regularization to a one-smoothing non-
convolution kernel, k(t, s) = 1 + ts, 0 ≤ s ≤ t ≤ 1. Here ū = −3t+ 5, g(u) = exp(u),
and discretization is determined by N = 100. In Figure 4 we show the results of
local regularization when applied to the case of 0.1% relative data error. Additional
nonconvolution examples may be found in [29].

20



Figure 3: Local regularization applied to the three-smoothing problem in Example 4.2.
Top row: 0% and 0.5% relative data error. Bottom row: 1%, and 4% relative data
error.

.

Table 2: Example 4.2 (three-smoothing convolution kernel)

Relative
data error

Local regularization Simplified regularization

Rel. error log2(ratio) αloc Rel. error log2(ratio) αlav

.005 .0278 – .150 .4860 – ∞
.01 .0425 .61 .175 .4860 0 ∞
.02 .0545 .36 .205 .4860 0 ∞
.04 .0686 .33 .230 .4860 0 ∞

4.2 A modified discrepancy principle for parameter selection

We briefly describe a discrepancy principle for the a posteriori selection of the local
regularization parameter α = αloc. The theoretical justification for the use of the
principle is well-established in the case of linear Volterra problems of convolution
type [2, 3]. A development of the convergence theory for the nonconvolution linear
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Figure 4: Local regularization applied to the one-smoothing nonconvolution problem
in Example 4.3, with αloc = .25. The relative error in the data is 0.1%

problem and for the Hammerstein problem is beyond the scope of this paper and will
be presented elsewhere.

For the discrepancy principle, we require the usual assumption (2.1) on data error,
as well as a new condition on the signal-to-noise ratio, namely, that there is τ̃ ∈ (1, 2)
for which the noisy data f δ satisfies∥∥∥f δ∥∥∥ > (τ̃ + 1)δ.

Define the operator Aα : C[0, 1]→ C[0, 1] by

Aαw := KαGw − aα (Gw − Gταw) , w ∈ C[0, 1], (4.6)

so that equation (3.21) (equivalently (3.2)) may be written in the form

aαGu+Aαu = f δα. (4.7)

Then the modified discrepancy principle for local regularization of the Hammerstein
problem is as follows. Choose the regularization parameter α = α(δ) as the smallest
α ∈ (0, ᾱ] so that

amα

∥∥∥Aαuδα − f δα∥∥∥ = τ̃ δ, (4.8)

for some fixed m ∈ (0, 1). (Any α ∈ (0, ᾱ) satisfying (4.8) would be acceptable.)

Remark 4.1. Note that the principle above resembles the class of modified discrep-
ancy principles originally studied by Engl, Groetsch, Schock and others for use with
Tikhonov and simplified (Lavrentiev) regularization in [10, 18, 32, 33] and considered
more recently in [11, 13, 30].

Under suitable conditions on ηα and the linearization parameter τ , it can be shown
that, for δ > 0 sufficiently small or for ‖f δ‖/δ sufficiently large, there exists a smallest
α = α(δ) ∈ (0, ᾱ] satisfying (4.8). Further, if the selection of α(δ) is made using (4.8),
it follows that α(δ)→ 0 and ‖uδα − ū‖ → 0 as δ → 0.
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Example 4.4. To illustrate application of the modified discrepancy principle (4.8) in
a numerical example, we repeat Example 4.2; here the choice of f δ from that example
is fixed so that the relative data error is 1%. The value of δ in (2.1) associated with
this f δ is δ = 0.0067. We use m = .01 and τ̃ =

√
2 in (4.8) and, for ᾱ = .25, seek

the smallest α ∈ (0, ᾱ] satisfying (4.8). Implementation of the modified discrepancy
principle in the discretized setting determines α(δ) = .165, where the corresponding
reconstruction has a relative error of .044. These results are illustrated in Figure 5
below.

Figure 5: Three-smoothing problem with 1% relative error in the data. The value
of α(δ) = 0.165 is selected using the modified discrepancy principle (4.8); for uδα
determined using this α, there is 4.4% relative error in the recovered solution.

5 Conclusion.

We have developed the theory of local regularization for nonlinear Volterra problems
of Hammerstein type in the case of one-smoothing nonconvolution kernels and ν-
smoothing convolution kernels for ν > 1. We have discussed practical implementation
of the method and demonstrated with numerical examples the way in which local
regularization can outperform simplified (or Lavrentiev) regularization. Finally, we
have used a modified discrepancy principle in a numerical example to illustrate the a
posteriori selection of the local regularization parameter α.
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